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Automated synthesis of oxygen-producing 
catalysts from Martian meteorites by a 
robotic AI chemist

Qing Zhu    1,8, Yan Huang    1,8, Donglai Zhou1,8, Luyuan Zhao1,8, Lulu Guo1, 
Ruyu Yang1, Zixu Sun    1, Man Luo1, Fei Zhang2, Hengyu Xiao1, Xinsheng Tang2, 
Xuchun Zhang2, Tao Song2, Xiang Li2, Baochen Chong2, Junyi Zhou2, 
Yihan Zhang2, Baicheng Zhang    1, Jiaqi Cao1, Guozhen Zhang    1, Song Wang1, 
Guilin Ye3, Wanjun Zhang3, Haitao Zhao    4, Shuang Cong    2, Huirong Li1, 
Li-Li Ling5, Zhe Zhang5,6, Weiwei Shang    2  , Jun Jiang    1,7   & Yi Luo    1,7 

Living on Mars requires the ability to synthesize chemicals that are 
essential for survival, such as oxygen, from local Martian resources. 
However, this is a challenging task. Here we demonstrate a robotic 
artificial-intelligence chemist for automated synthesis and intelligent 
optimization of catalysts for the oxygen evolution reaction from Martian 
meteorites. The entire process, including Martian ore pretreatment, 
catalyst synthesis, characterization, testing and, most importantly, the 
search for the optimal catalyst formula, is performed without human 
intervention. Using a machine-learning model derived from both 
first-principles data and experimental measurements, this method 
automatically and rapidly identifies the optimal catalyst formula from 
more than three million possible compositions. The synthesized catalyst 
operates at a current density of 10 mA cm−2 for over 550,000 s of operation 
with an overpotential of 445.1 mV, demonstrating the feasibility of the 
artificial-intelligence chemist in the automated synthesis of chemicals and 
materials for Mars exploration.

Mars has for decades attracted intensive scientific exploration and 
research in countries worldwide. Finding signs of past life and build-
ing potentially habitable regions on Mars have long been a dream of 
humanity. In situ resource utilization on Mars will be applied to sub-
stantially reduce the cost and complexity of human missions, enabling 
sustainable exploration by utilizing local resources to produce neces-
sary supplies. Oxygen supply must be the top priority for any human 

activity on Mars, because rocket propellants and life support systems 
consume substantial amounts of oxygen, which cannot be replenished 
from the Martian atmosphere1,2. Fortunately, recent evidence of water 
activity3,4 has raised the prospect of large-scale oxygen production 
on the planet through solar-power-driven electrochemical water oxi-
dation processes using an oxygen evolution reaction (OER) catalyst. 
Using extraterrestrial catalysts developed from local materials to drive 
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entire process of chemical synthesis, structural characterization and 
performance testing using a mobile robot and 14 task-specific chemis-
try workstations but it can design the best formula for a chemical syn-
thesis task through a powerful computational module that combines 
machine learning (ML) algorithms and theoretical models to analyse 
both robot-acquired experimental data and massive first-principles 
simulation data9. Our AI chemist has accelerated the discovery of the 
optimal synthetic formulas for high-entropy electrocatalysts by five 
orders of magnitude compared to conventional trial-and-error experi-
ment paradigm. Without prior knowledge about the exact composi-
tion of available Martian ores for making OER catalysts, the proposed 
automated approach must not only be capable of screening numerous 
candidates for the best formula, but also be intelligent to dissect usable 
yet unidentified raw materials and determine the predictive model on-
the-fly. We developed a specific protocol for our AI-chemist system to 
tackle this challenge, advancing the in situ resource utilization strategy 
for Mars and interstellar exploration in the future.

In this proof-of-concept work, we demonstrate the superiority 
of the data-driven protocol using an AI chemist over the conventional 
trial-and-error protocol by the design of a six-metallic element OER 
catalyst from a pool of 3,764,376 compositions. Within six weeks, the 
AI chemist built a predictive model by learning from nearly 30,000 
theoretical datasets and 243 experimental datasets using ML and Bayes-
ian optimization algorithms, which delivers a promising OER catalyst 
formula coupled with the most suitable synthetic conditions. The 
resulting polymetallic material (comprising Mn, Fe, Ni, Mg, Al and Ca) 
catalysed the OER with an overpotential of 445.1 mV at a current den-
sity of 10 mA cm−2, maintained for 550,000 s. Further, the stress test at 
−37 °C, which mimics the temperature condition on Mars, confirmed 
that it can steadily produce oxygen without apparent deterioration, 
suggesting that it can work in the harsh conditions on Mars. A ground-
based verification system is currently being developed to provide more 

oxygen production allows for the on-site production of fuel and oxygen 
on Mars, which represents a low-hanging fruit in the exploration of this 
planet. However, two major technical challenges must be overcome to 
synthesize usable OER catalysts by using local Martian raw materials5,6. 
First, the synthetic system must be unmanned and self-directing, as the 
vast astronomical distance hinders real-time remote guidance from 
humans. Second, it should be equipped with the scientific intelligence 
needed to efficiently identify the best formula of catalyst ingredients 
through artificial-intelligence (AI) algorithms, given knowledge of 
elemental abundances in the Martian local ores. Designing a catalyst 
from a given list of elements requires the exploration of a vast chemical 
space, which poses a daunting task using the conventional ‘trial-and-
error’ paradigm. Given five different local Martian ores as feedstocks, 
there are 3,764,376 possible formulas, estimated by the combination of 
integer percentages in 1% intervals; finding the optimal formula would 
require 2,000 years of human labour to finish such a screening, where 
each complete experiment takes 5 hours, at least.

Robotic synthetic systems with AI appear to be the only viable 
technology for addressing these two challenges, as suggested by recent 
advances in automated chemical synthesis systems. The mobile chem-
ist by Cooper and colleagues shows excellent ability to perform high-
throughput performance testing for human-made photo-catalysts, 
providing local optimization with measured data to achieve better 
formulations7. The ChemPU system by Cronin and colleagues demon-
strates its extraordinary power in automatic synthesis of organic mol-
ecules starting from machine-reading synthetic chemistry literature8. 
These robotic systems need an intelligent subsystem to acquire chemi-
cal knowledge and form predictive physical models to direct local 
optimization in chemical synthesis. Inspired by these researchers' 
pioneering work on robotic chemical synthesis systems, we have devel-
oped an all-in-one robotic artificial-intelligence chemist (AI chemist) to 
enable automated, self-directed synthesis. Not only can it conduct the 
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Fig. 1 | Workflow of an all-encompassing system for the on-site design and 
production of an OER electrocatalyst on Mars by an AI chemist consisting 
of a mobile robot, a computational ‘brain’, a cloud server and 14 task-
specific workstations. The dual-cycle automated process integrates material 
preparation, catalyst production, performance characterization and formula 
optimization in the following steps, as labelled. Step 1: Analyse the precise 
composition of Martian ores by LIBS. Step 2: Generate polymetallic catalyst 
structures by classical MD simulations. Step 3: Calculate the OER activities 

of the structures using DFT. Step 4: Build an NN model using simulation data. 
Step 5: Re-train the NN model using robotic experimental data. Step 6: Fine-
tune the parameters in the NN model to predict experimental overpotential 
with confidence level over 0.95. Step 7: Screen for the optimum formula using 
Bayesian optimization algorithms. Step 8: Predict the optimal synthetic formula 
with the lowest OER overpotential using available Martian ores. Step 9: Validate 
the OER performance of the catalyst prepared with predicted formula (arrow 
pointing back to ‘Martian Ore’ box for feedstocks configuration).
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realistic space conditions for the AI chemist, which will be essential for 
the construction of the International Lunar Research Station and Mars 
Research Station; both were designed for long-term robotic operation 
and short-term human participation. The AI chemist thus represents a 
promising technique for on-site synthesis of OER electrocatalysts on 
Mars and constitutes a versatile and efficient platform for the supply 
of complex functional materials for planetary and space exploration.

Protocol for the AI chemist making OER 
electrocatalysts on Mars
To facilitate the work of the AI chemist on Mars, we proposed a double-
layer workflow for the on-site synthesis of OER electrocatalysts (Fig. 1). 
The outer layer, which comprises a 12-step automated experiment and 
data management, is done by the robot and various ‘smart’ chemical 
workstations; the inner layer, which includes nine consecutive digital 
operations, is executed by the intelligent computational ‘brain’ (Sup-
plementary Video 1 and Supplementary Figs. 1–3).

In the experimental cycle, samples of local ore (Supplementary 
Figs. 4–9) obtained by an exploratory robot are sent to the laser-
induced breakdown spectroscopy (LIBS) facility for elemental analysis 
(Supplementary Fig. 10). The robot carries out a set of physical and 
chemical pretreatment of ores needed for catalyst synthesis, including 
weighing (with a precision of 0.1 mg) in the solid-dispensing worksta-
tion, preparation of feedstock solutions in the liquid-dispensing and 
mixing workstations (Supplementary Table 1), separation from liquid in 
the centrifugation workstation and solidification in the dryer worksta-
tion. Then, the catalyst ink prepared by adding Nafion adhesive into the 
resulting metal hydroxides is used for making the working electrode 

for electrochemical OER testing at the electrochemical workstation. 
Experimental data are sent to a cloud server for ML processing by the 
computational ‘brain’.

In the computational cycle, the ‘brain’ employs molecular dynam-
ics (MD) simulations for tens of thousands of high-entropy hydroxides 
with different elemental ratios and applies density functional theory 
(DFT) calculations to estimate OER activities. Simulation data are used 
to train a theory-based neural network (NN) model for OER with varying 
elemental composition, which is soon re-trained and optimized with 
robot-driven experimental data. By embedding the optimized NN 
model in a Bayesian algorithm, the ‘brain’ predicts the best combina-
tion of available Martian ores for synthesizing an optimal OER catalyst, 
which is then verified experimentally by the AI chemist.

Building pretrained ML models using the 
computational ‘brain’
The OER is a thermodynamically uphill reaction involving four con-
secutive oxidation steps and O–O bond formation, which requires an 
applied voltage of no less than 1.23 V to operate. The OER overpotential, 
which is defined as the extra voltage above 1.23 V required for catalysis 
to occur, characterizes the voltage efficiency of the electrochemical 
device. Therefore, we chose the measured overpotential as the primary 
target of our ML model in searching for the optimal OER catalyst10–12. 
We first created 29,902 unique compositions and simulated atomic 
structures of resulting high-entropy hydroxides (Fig. 2a) from clas-
sical MD simulations (Supplementary Figs. 11 and 12). The obtained 
structural features, such as averaged metal–metal and metal–oxygen 
distances (Supplementary Figs. 13 and 14 and Supplementary Table 2), 
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Fig. 2 | Theoretical simulation and performance prediction of multimetallic 
hydroxides. a, Representative structure of multimetallic hydroxides generated 
by classical MD simulation. b, Reaction mechanism of the OER. c, Statistics 

of three OER descriptors, ∆GOH*, ∆GO*−OH* and ∆q, predicted by the NN. d, The 
prediction results of measured OER overpotentials by predictive model that was 
calibrated by experiments. In c and d, r is the Pearson correlation coefficient.
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are passed to previously established bimetallic hydroxide models13,14 
(Fig. 2b) to determine the OER activity of each multimetallic hydroxide 
by DFT calculation. Three DFT-predicted OER activity descriptors—
including the Gibbs free energy change of hydroxyl adsorption ΔGOH*  
(ref. 15) and differences between the Gibbs free energy change for oxy-
gen adsorption and hydroxyl adsorption ΔGO*−OH* (ref. 16), the amount 
of charge transferred for hydroxyl adsorption on the activate site Δq  
(ref. 17)—and the paired composition information are used for NN train-
ing. As Fig. 2c shows, the NN model can accurately reproduce these DFT 
results. With the NN model, we can now rapidly predict the OER activity 
of high-entropy hydroxides obtained from any given composition of 
selected Martian ores (Supplementary Fig. 15), and these theoretical 
values are then connected with experimentally measured overpoten-
tials. The ML model achieves remarkable accuracy in predicting true 
overpotentials (Fig. 2d).

High-throughput automated synthesis-
characterization-performance optimization 
executed by the AI chemist
Using the LIBS-determined elemental composition of each Martian ore 
in Fig. 3a (here we use Martian meteorites to represent in situ Martian 
ores), the AI chemist prepared 243 different formulas with randomly 
selected compositions of six metal elements, performed electrocata-
lytic OER testing using each of them as catalyst and measured over-
potentials by analysing linear sweep voltammetry (LSV) polarization 

curves at a current density of 10 mA cm−2 (η10) per geometric area. The 
reason for choosing this specific current density is that it is approxi-
mately the current density expected at the anode of a 23% efficient 
solar-to-fuels conversion device under 1-sun illumination received on 
Mars18,19. This preliminary screening generated an array of η10 values 
ranging from 482.2 to 1,056.2 mV (Fig. 3b). Then we trained the second 
NN model by using three computed OER activity descriptors and 243 
sets of compositions as inputs and their corresponding experimental 
overpotentials as output (Fig. 2d). By concatenating these two NN mod-
els, the OER overpotentials for all 29,902 compositions can be easily 
predicted, creating a much larger dataset for Bayesian optimization10 
to generate the optimal formula for a desired OER catalyst (Fig. 3c).

As the Kiviat plot indicates (Fig. 3d), the optimal compositions 
identified by the Bayesian model differ greatly from those of the best 
sample, namely Experiment No. 197 (Exp-197) from the pilot experi-
ments, indicating that Bayesian optimization based on both simulated 
and experimental datasets can surpass experimental-data-guided 
local search. Meanwhile, the product with optimal composition pre-
dicted by the model that uses theoretical data also gives worse per-
formance than the one from Bayesian optimization that relies on both 
simulated and experimental data (Supplementary Fig. 16). The catalyst 
with optimal composition (Model-guided OPT) was synthesized and 
verified by the AI chemist to have η10 = 445.1 mV, showing a substantial 
improvement (37.1 mV lower) with respect to the best result from a 
purely experimental search. Bayesian optimization suggested a metal 
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composition that was almost identical to that suggested by the grid 
point scanning in the simulation with the re-trained NN model, but 
with much less time consumption, suggesting that Bayesian optimiza-
tion is more effective in finding a solution (Supplementary Table 3).  
For comparison, we also made a test using the experimental data 
only as input for Bayesian optimization. The resultant optimal com-
position of meteorites (Exp-guided OPT) gives η10 = 467.4 mV, which 
is very close to the best result among the 243 pilot experiments  
(Fig. 3d). Hence, the intrinsic limitation of local optimization with 
limited experimental data would likely be overcome by concatenat-
ing NN models trained from both theoretical and experimental data. 
After all, attempting to achieve the global best synthetic formula 
by exhaustive trial-and-error approach requires 3,764,376 possible 
experimental traversal searches (Supplementary Note 1), which is a 
nearly impossible task. The synthetic formulas of the several studied 
catalysts are listed in Supplementary Table 4, clearly and quantitatively 
comparing the differences in metal ratios among them. We also synthe-
sized catalysts using only one meteorite as feedstock and found that 

all performances were inferior to the local optimum solution found 
(Exp-197) (Supplementary Fig. 17).

After determining the optimal metal ratio with minimum overpo-
tential, we performed detailed comparisons of other electrochemical 
parameters (Supplementary Figs. 18–20). We derived the trend of the 
reaction activation energy from the Tafel slope. The Model-guided 
OPT in 1.0 M KOH required a low value of only 61.35 mV dec−1 to reach 
η10, outperforming Exp-197 (83.59 mV dec−1) and Exp-guided OPT 
(65.02 mV dec−1) catalysts, indicating that it possesses a favourable 
kinetic process for an OER. The electrochemical surface area reflects 
the chemisorption capacity of the reacting substrate and the exposure 
of surface active sites. This parameter can be estimated by measuring 
the Helmholtz double-layer capacitance, allowing comparison of the 
intrinsic electrochemical activity of different catalysts20. We found 
that the Model-guided OPT catalyst possesses the highest double-layer 
capacitance, which is about twice that of either the Exp-197 or Exp-
guided OPT catalyst. This result implies that H2O molecules can be in 
close contact with the surface of this catalyst and that both the input 
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of electrolyte and diffusion of the gaseous O2 product are effectively 
accelerated. Electrochemical impedance spectroscopy is a technique 
that probes the internal processes of an electrochemical system and 
allows measurement of the operating state of the electrodes for kinet-
ics study. By measuring the location and size of the semicircular region 
in the Nyquist plots, the voltages of solution and working electrode 
resistance losses can be obtained, which helps to analyse impedance 
changes as an aid in the assessment of electrocatalytic efficiency. We 
found that the semicircular diameters of the Exp-197, Exp-guided OPT 
and Model-guided OPT catalysts decrease sequentially, indicating that 
their charge transfer (or Faradaic) resistances follow the same trend.

Feasibility validation of oxygen production under 
simulated Martian environment
To verify the usability of catalysts under the low-temperature condi-
tion on the Martian surface, we performed an experiment based on 
the previous work of Gayen et al.1 and the fact that large-scale water 
resources have been found in the Martian regolith21,22. The operat-
ing conditions on the Martian surface were constructed with a 2.8 M 
Mg(ClO4)2 brine solution as the electrolyte, platinum mesh as coun-
ter electrode and robust Ag wire as the reference at 23 °C and −37 °C 
(Fig. 3e). The LSV polarization curves suggest low voltage values of 
1.5685 V and 1.7289 V to reach the current density of 10 mA cm−2 with 
Tafel slopes of 174.1 mV dec−1 and 200.3 mV dec−1, respectively (Fig. 3f 
and Supplementary Fig. 21).

Long-term stability is crucially important for the practical appli-
cation of OER catalysts. We performed cycling stability tests on the 
catalyst under various conditions by applying a certain voltage to the 
catalyst working electrode and assembling the electrolyser to main-
tain its initial oxygen production current at 10 mA cm−2 in a classical 
three-electrode system (Fig. 4a–f). Prolonged testing showed that the 
as-prepared Model-guided OPT catalyst works steadily at the current 
density of 10 mA cm−2 for more than 550,000 s (~153 h) in 1 M KOH at 
23 °C and 350,000 s (~97 h) in 2.8 M Mg(ClO4)2 brine solution at −37 °C 
(Fig. 4g), indicating that this AI-chemist-designed catalyst is as stable 
as other state-of-the-art OER catalysts. It can also be estimated that 
in 1 M KOH, the catalyst made by AI chemist can achieve an average 
O2 production rate of 59.08 g h−1 m−2. For a Martian station room with 
300 m3 volume (100 m2 area and 3 m height) coated with the produced 
OER catalyst film on its roof, it will take about 15.2 h to achieve oxygen 
self-sufficiency. This process could be accelerated with the catalyst 
directly grown on the conductive nickel foam substrate as it is synthe-
sized, which maintains considerably efficient and stable O2 production 
capability at an even higher current density condition (Supplementary 
Fig. 22), albeit requiring larger area solar panels to generate more 
electricity to boost the OER reaction. It is likely that given more types of 
metal elements in Martian ores and advanced mineral refining facilities, 
the performance of Mars-mineral-derived chemicals and materials can 
be further improved in the future.

Conclusion
Our study provides a demonstration that an advanced AI chemist can, 
without human intervention, synthesize OER catalysts on Mars from 
local ores. This system has demonstrated its ability to perform all 
required experimental steps, including raw material analysis, pretreat-
ment, synthesis, characterization and performance testing with high 
precision and also shown its intelligent analysis power in identifying 
the best formula for a Martian OER catalyst from millions of possible 
combinations. Particularly powerful is the in situ optimization, which 
seamlessly combines the experimental data and computational data 
during the synthesis process, greatly accelerating the generation of 
a reliable model and finding of an optimal formula. The established 
protocol and system, which are generic and adaptive, are expected to 
advance automated material discovery and synthesis of chemicals for 
the occupation and exploration of extraterrestrial planets.

Methods
Chemicals and materials
NaOH (99.9%), KOH (99.9%), HCl (37% trace metals), K3[Fe(CN)6] (99%), 
K4[Fe(CN)6]•3H2O (99.5%), anhydrous ethanol and 5 wt% Nafion 117 
solution were purchased from Sigma-Aldrich. The counter electrode of 
graphite rod and reference electrodes of Ag/AgCl in saturated KCl were 
purchased from CH Instruments. The deionized water (18.2 MΩ cm−1) 
used for the feedstocks solution and aqueous electrolytes preparation 
were made with a Milli-Q EQ 7000 Ultrapure water purification system.

Catalyst synthesis
Five different categories of meteorites that come from or have been 
confirmed to exist on Mars were selected23,24; complete information 
describing these approved meteorites can be found on the website 
of the Meteoritical Bulletin Database available at http://www.lpi.usra.
edu/meteor/. We digested various masses of these individual mete-
orites in 1 mol l−1 hydrochloric acid solution based on the results of 
elemental analysis by a LIBS spectrometer, which was used to config-
ure the feedstocks solution to control the total mass concentration 
of the six key catalytic metals (that is, Fe, Mn, Ni, Ca, Mg and Al) to 
200 mg l−1. For the catalyst preparation, the AI chemist set the addi-
tion amount of total feedstocks solution to reaction vial to 10 g at the 
liquid-dispensing workstation, but randomly varied the proportion 
of each feedstock entered. In this manner, the atomic ratio of metals 
in the final product can be finely adjusted. Afterwards, 3 g of aque-
ous NaOH solution with a concentration of 4 mol l−1 was added to the 
reaction vials and stirred for 5 minutes, followed by centrifugation at 
7,500g for 5 minutes, aspiration of the upper waste solution, washing 
with anhydrous ethanol and drying at 60 °C. The described synthetic 
procedure was done to perform the initial search for the optimal metal 
ratio in a catalyst and was performed for 243 groups of experiments. 
During the whole process, the intelligent ‘brain’ of the AI-chemist sys-
tem automatically generates .xml execution files and sends them to the 
experimental robot, which—with various synthesis and testing workstations— 
sequentially automates the preparation of the catalyst material. Simi-
larly, the synthesis of samples Exp-guided OPT and Model-guided 
OPT is based on the same method as above, except that the respective 
metal ratios are determined and given by the intelligence ‘brain’ and 
converted by a transformation matrix.

Analysis of metal content in meteorites by LIBS
LIBS is a rapid chemical analysis technology that offers many compel-
ling advantages compared to other elemental analysis techniques in 
geoscience. The main physical process that constitutes the essence of 
LIBS technology is the formation of a high-temperature plasma created 
by ultrafast laser pulses (UFLPs). When the UFLP beam is focused on 
the surface, a small portion of sample mass is ablated, a process called 
laser ablation. This ablated mass further interacts with the trailing 
portion of the UFLP to form a short-lived high-temperature plasma 
containing free electrons, excited atoms and ions. When the laser pulse 
is terminated, the plasma cools and the electrons in atoms or ions at 
the excited state decay to their natural ground state. Correspondingly, 
the wavelengths of the emitted photons are inversely proportional to 
the energy difference between the excited and ground states, so that 
each element has its own set of characteristic emission wavelengths, a 
fingerprint signature, which is then collected and coupled to the spec-
trometer detector module for LIBS spectroscopy. Each element in the 
periodic table is associated with a unique LIBS spectral peak. The high 
energy density of the focused UFLP allows the excitation of material 
in any physical state (in our case, solid) to form a plasma, allowing the 
LIBS technique to analyse samples and assess the relative abundance 
of each constituent element.

Our LIBS workstation consists of a researcher-developed sample 
feed system, a nanosecond laser generator (Quantel Viron), a fibre-
optic spectrometer (AvaSpec-ULS2048CL-2-EVO), an optical system 
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and a high-performance computer. The feed system consists of a 
motorized delivery track, a slowly rotating sample stage and a motor 
control unit. The control unit is designed independently, with the main 
control chip being the Atmel-produced MEGA 2560V chip. The robotic 
arm of the AI chemist places the sample on the stage, which is then 
delivered by the feed system for laser irradiation with slow rotation so 
that different points on the surface are excited by the laser to obtain an 
unattenuated signal. The pulsed laser emitted from the laser genera-
tor is focused on the sample surface by the optical system to produce 
a transient high-temperature plasma. The signal is captured by the 
optical fibre of the spectrometer. A researcher-written programme in 
the computer controls the measurement process automatically and 
acquires spectral data from the spectrometer for subsequent analysis 
and processing.

The LIBS spectra were collected under optimized conditions: 
laser pulse energy, 105 mJ; spot diameter, 2 mm; spectrometer slit 
width, 15 mm; gate width, 1 ms and acquisition delay, 180 ms. In total, 
388 sets of data points were obtained, these spectra were accumu-
lated, and then the peak line region of the target element was marked 
according to the elemental peak lines obtained from the NIST database 
(https://physics.nist.gov/PhysRefData/ASD/lines_form.html) and the 
baseline correction was performed for peak line region. After wavelet 
filtering, the best Lorentz peak shape and the offset of the actual peak 
line relative to its standard spectrum were obtained by fitting with the 
Levenberg–Marquadt method. Here, the half-height width of the peak, 
the wavelength of crest and the signal intensity were used as intrinsic 
characteristics. The preliminary element content was calculated by 
linear regression. Subsequently, the top 50 data points in the original 
spectrum with the highest correlation with the elemental content 
(found by the LASSO algorithm after normalization from the pretrain-
ing set data) are transformed in the same way as the pretraining set 
data and then entered into a pretrained backpropagation NN together 
with the preliminary content calculated in the previous step to obtain 
a more accurate elemental content. Similarly, the above analysis is 
repeated for each targeted element to obtain the exact content with a 
relative error within ±5%.

Transfer metals molar ratio to Martian ores mass ratio
The feedstock solutions are prepared by the following procedure: 
Take out 271.05 mg of Aletai, 567 mg of NWA 8171, 563.2 mg of NWA 
13669, 935 mg of NWA 12564, 688.5 mg of Hassi Messaoud 001, each 
dissolved in 1 l of acidic solution to prepare the feedstock solution for 
the experiments. In this way, the total mass concentrations of metal 
ions in all feedstock solutions are controlled at about 200 mg l−1; the 
concentrations of metals are listed in Supplementary Table 1.

Because the ML-model-predicted results are the metal molar 
ratios, we prepared a researcher-developed software programme to 
transfer metals molar ratio to Martian ores mass ratio for convenient 
robotic weighting operation. The software is developed using Python, 
and it is also converted to a windows-based executable programme 
(Supplementary Fig. 15). The source code is as follows:

  import tkinter as tk
  import numpy as np
  from scipy.linalg import solve
  window = tk.Tk()
  window.title(‘Transfer ratio’)
  window.geometry(‘500×750’)

  s1 = tk.Label(window,text = ‘Fe’)
  s1.pack()
  a1 = tk.Entry(window,show=None)
  a1.pack()

  s2 = tk.Label(window,text = ‘Mn’)
  s2.pack()

  a2 = tk.Entry(window,show=None)
  a2.pack()

  s3 = tk.Label(window,text = ‘Ni’)
  s3.pack()
  a3 = tk.Entry(window,show=None)
  a3.pack()

  s4 = tk.Label(window,text = ‘Ca’)
  s4.pack()
  a4 = tk.Entry(window,show=None)
  a4.pack()

  s5 = tk.Label(window,text = ‘Mg’)
  s5.pack()
  a5 = tk.Entry(window,show=None)
  a5.pack()

  s6 = tk.Label(window,text = ‘Al’)
  s6.pack()
  a6 = tk.Entry(window,show=None)
  a6.pack()

  def transfer():
    b1 = a1.get()
    b2 = a2.get()
    b3 = a3.get()
    b4 = a4.get()
    b5 = a5.get()
    b6 = a6.get()
�metal_ratio = np.array([float(b1),float(b2),float(b3),float(b4),fl
oat(b5),float(b6)])
abundance = np.array([[3.303,0,0.328,0.0055,0.00155,0.00149],
  [1.379,0.0288,0,0.1374,5.167,0.02],
  [2.4,0.0521,0,0.7697,1.306,0.0803],
  [0.97,0.0132,0,1.417,0.744,2.759],
  [2.238,0.0541,0,1.142,1.438,0.0779]])
transfer_matrix = abundance.T
meteorite_ratio = solve(transfer_matrix[0:5], metal_ratio[0:5])
meteorite_ratio = meteorite_ratio/sum(meteorite_ratio)
abcdelist = [0.27105,0.567,0.5632,0.935,0.6885]
meteorite_ratio = meteorite_ratio*10*abcdelist
meteorite_ratio = meteorite_ratio.round(4)
result = ‘,’.join(str(i) for i in meteorite_ratio)
t.insert(‘insert’,‘meteorite ratio (A,B,C,D,E) is: ‘+result + ‘\n’)

button = tk.Button(window,
text = ‘Transfer’,
width=15, Height=2,
command=transfer,)

button.pack()

t = tk.Text(window)
t.pack()
window.mainloop()

OER measurement under 1 M KOH alkaline condition
All the electrochemical measurements were conducted at the electro-
chemical workstation (CHI660E, CH Instruments) in a standard three-
electrode setup with the catalyst derived from Martian meteorites as 
the working electrode, a graphite rod as the counter electrode and Ag/
AgCl in saturated KCl as reference electrode. All the electrocatalytic 
OER performance was studied under alkaline conditions (1 mol l−1 KOH). 
The applied potential was calibrated to reversible hydrogen electrode 
(RHE) following the equation ERHE = EAg/AgCl + 0.0591 × pH + 0.197 V. 
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Unless otherwise specified, neither iR-compensation nor background 
current correction was applied. For the working electrode preparation, 
the as-prepared catalyst dispersing in 5 ml of a mixed solution of etha-
nol (4.8 ml) and 5 wt% Nafion (0.2 ml) under magnetic stirring to form a 
uniform catalyst ink. Then, 200 μl of the resulting catalyst ink was drop-
casted onto a carbon paper with the loading area of 2.5 × 2 cm2, and the 
corresponding final metal loading was calculated to be 0.08 mg cm−2. 
Cyclic voltammetry activation curve was performed 40 times from 1.0 V 
to 1.5 V with respect to the RHE reference at a sweep rate of 50 mV s−1. 
LSV measurements were performed from 1.0 V to 2.0 V with respect to 
the RHE reference at a scan rate of 5 mV s−1. Tafel slope (b) is obtained by 
fitting the linear portion according to the Tafel equation (η = a + blog j)  
using the overpotential (η) as a function of the logarithmic scale of 
current density (log j). Electrochemical impedance spectroscopy 
measurements performed at an overpotential of 0.4 V for working 
electrodes. Electrochemical active surface areas are evaluated based 
on the double-layer capacitance via the analysis of a series of cyclic vol-
tammetry measurements performed within the non-Faradaic potential 
region (1.05 to 1.15 V with respect to the RHE reference) at various scan 
rates (10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 mV s−1). The 
chronoamperometry (i–t) test was collected at a constant potential 
at 1.7 V with respect to the RHE reference for 550,000 seconds. All the 
electrochemical characterizations can be performed automatically 
by one-click measurements and generate the experimental reports 
using a researcher-written Python code. To grow the catalyst on nickel 
foam substrate for oxygen production at industrial current density, we 
added feedstocks solution prepared from five Martian meteorites to 
the autoclave reactor, followed by NaOH addition to adjust the pH to 
5–6, then 0.2 g of urea was added to dissolve, and finally cleaned nickel 
foam with thickness of 2 mm was placed vertically, encapsulated and 
held at 130 °C for 10 hours. When the reaction is completed, the nickel 
foam is taken out, washed and dried for OER performance testing in 
compliance with the described three-electrode system.

In situ electrocatalytic oxygen generation experiments under 
simulated Martian surface environmental conditions
As the Martian surface is well below 0 °C for most of the Mars year 
and its atmosphere is rich in CO2, we used aqueous Mg(ClO4)2 solu-
tion (pH ≈ 7) with a concentration of 2.8 M as a mimic of the brine 
solution already explored on Mars and then used a dry ice solution of 
ethanol-ethylene glycol mixture at a constant temperature of −37 °C for 
OER testing25. Considering such a low temperature, the conventional  
Ag/AgCl electrode is no longer suitable as a reference; therefore, we 
used Ag wire (99.99%, φ = 1.5 mm) as a reference electrode at low-
temperature conditions and potassium ferrocyanide-potassium fer-
ricyanide oxidation-reduction potential buffer as internal standard 
to determine the potential of Ag wire at approximately 0.427 V with 
respect to an RHE reference. All electrochemical test steps and data 
processing procedures are similar to those performed in 1 M KOH, 
except that the corresponding voltage window is changed and the 
Mg(ClO4)2 solution is saturated with CO2 (99.999%) prior to testing.

Theoretical calculations
MD simulations. To extract structural features of high-entropy hydrox-
ides, we sampled one million equilibrated structures for each of 29,902 
unique formulas of six-metallic elements (Fe, Ni, Mn, Ca, Mg and Al) 
using classical MD simulation. The initial configuration of each com-
position was generated by randomly placing 60 different metal cations 
and sthe corresponding number of hydroxyl anions for maintaining 
neutrality into a cubic box of 3 × 3 × 3 nm3 using GROMACS26. The uni-
versal force field27 was adopted and all parameters for high-entropy 
hydroxides were generated by the LAMMPS Interface programme28. 
The cutoff distances for both Lennard–Jones and Coulombic potential 
were set to be 12.5 Å. Then, each initial structure was pre-equilibrated 
by energy minimization. In a production MD run, a trajectory of 1 ns 

with a time step of 1 fs was collected in an NPT ensemble with P = 1 atm 
and T = 2,000 K using the Nosé–Hoover barostat and thermostat29,30. 
For each trajectory, we retrieved 100 configurations in an evenly 
divided 10 ps interval and computed averaged metal–metal and 
metal–oxygen distances as structure features of these high-entropy 
hydroxides. All force field base simulations were carried out with the  
LAMMPS package31.

DFT calculation. To describe the OER activity of high-entropy hydrox-
ides, DFT calculations on the simplified bimetallic hydroxide model 
with the information of statistical structure features of each unique 
composition embedded were performed using the Perdew–Burke–
Ernzerhof functional32 and the projector augmented wave method33 
as implemented in the Vienna ab initio simulation package34. The 
kinetic energy cutoff of the plane-waved basis set was 400 eV. The 
Brillouin zone was sampled with 3 × 2 × 1 Monkhorst–Pack k-mesh 
with the vacuum size chosen to be 15 Å to avoid interaction between 
two layers for all structures. The long-range van der Waals interac-
tion corrections were described using Grimme’s D3 correction35. All 
geometry but the metal–(η2-oxygen)2–metal moiety is allowed to relax. 
The convergences of total energy for wave function self-consistency 
and force between atoms for optimization were set to be 10−5 eV and 
0.01 eV Å−1, respectively.

Calculation for the free energies. The Gibbs free energies ∆GOH* and 
∆GO*−OH* = ∆GO*−∆GOH* and ∆q (the amount of charge transferred for 
hydroxyl adsorption on the activate site) were used as computational 
descriptors of OER activity. For all possible combinations of dual metal 
atoms in every high-entropy hydroxide, their OER descriptors were 
calculated using the following procedure.

The elementary steps of hydroxyl adsorption and oxygen adsorp-
tion can be given as:

∗ +H2O(l) → OH∗ +H+ + e−ΔGOH∗

∗ +H2O(l) → O∗ + 2H+ + 2e− ΔGO∗

Under zero potential, the Gibbs free energy of each elementary 
step was given by the expression:

ΔG = ΔE + ΔZPE − TΔS

where ∆E is the change in reaction energy. The ∆ZPE is the zero-point 
energy change, and ∆S is the entropy change for each elementary step 
with the temperature at 298.15 K.

NN architecture
The first NN model—which uses information of metal composition as 
input and the DFT calculated three catalytic properties (∆GOH*, ∆GO*−OH*, 
∆q) as output—comprises one input layer, two hidden layers and one 
output layer. The number of neurons in both hidden layers is 512. To 
link computed catalytic properties and experimentally measured 
overpotential, the second NN model was built with one input layer, 
three hidden layers involving 128 neurons each and one output layer. 
For the training of each NN, the dataset was divided into two subsets, 
one for training (80%) and the other for testing (20%). The NN model 
was trained with a backpropagation algorithm and the Rectified Linear 
Unit activation function36 as implemented in TensorFlow37.

Two NNs were combined to create a predicting model that used 
the metal composition as a descriptor to estimate the real overpoten-
tial. A Bayesian approach, taking above predicting model as objective 
function, was then applied to identify the optimal metal composition 
with the highest catalytic activity. The Bayesian optimization loop 
consisted of 280 iterations, and the surrogate model was a basic Gauss-
ian process, which could capture the uncertainty and noise in the data 
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and handle different types of objective functions. We also used the 
upper confidence bound as our acquisition function, which balanced 
exploration and exploitation by adding a positive term depending on 
the standard deviation to the mean estimate of the objective function.

Data availability
The data that support the findings of this study are available in the 
paper, its Supplementary Information and Supplementary Video 1.

Code availability
The code used for training an NN model for OER prediction with 
theoretical data and robot-driven experimental data is available 
on GitHub at https://github.com/Lulu971231/code-for-Oxygen- 
Producing-Catalysts-from-Martian-Meteorites.
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